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Abstract

A search is performed for the production of heavy resonances decaying into top-
antitop quark pairs in proton-proton collisions at

√
s = 8 TeV. Data used for the

analyses were collected with the CMS detector and correspond to an integrated lu-
minosity of 19.7 fb−1. The search is performed using events with three different final
states, defined by the number of leptons (electrons and muons) from the tt→WbWb
decay. The analyses are optimized for reconstruction of top quarks with high Lorentz
boosts, where jet substructure techniques are used to enhance the sensitivity. Results
are presented for all channels and a combination is performed. No significant excess
of events relative to the expected yield from standard model processes is observed.
Upper limits on the production cross section of heavy resonances decaying to tt are
calculated. A narrow leptophobic topcolor Z′ resonance with a mass below 2.4 TeV
is excluded at 95% confidence level. Limits are also derived for a broad Z′ resonance
with a 10% width relative to the resonance mass, and a Kaluza–Klein excitation of the
gluon in the Randall–Sundrum model. These are the most stringent limits to date on
heavy resonances decaying into top-antitop quark pairs.
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1 Introduction
The top quark is the heaviest known fundamental particle, with a mass close to the electroweak
scale. It has a Yukawa coupling to the Higgs potential close to unity, and is therefore closely
connected to the hierarchy problem, where the largest corrections to the mass of the Higgs
boson arise from top-quark loops. Studies of top-quark production may provide further insight
into the mechanism of electroweak symmetry breaking, especially in the light of the recent
discovery of a Higgs boson [1–3] and a precision measurement of its mass [4–6].

Many theories beyond the standard model (SM) predict the existence of heavy resonances,
generically referred to as Z′, that preferentially decay to tt pairs and manifest themselves as
a resonant component on top of the SM tt continuum production. Examples of such models
include colorons [7–9] including a leptophobic topcolor Z′ [10], extended gauge theories with
massive color-singlet Z′ bosons [11–13], axigluons [14, 15], and models in which a pseudoscalar
Higgs boson may couple strongly to top quarks [16]. Furthermore, various extensions of the
Randall–Sundrum model [17] with extra dimensions predict Kaluza–Klein (KK) excitations of
gluons gKK [18] or gravitons GKK [19], both of which can have enhanced couplings to tt pairs.

Direct searches for heavy tt resonances have been performed at the Fermilab Tevatron and
the CERN LHC colliders, with no evidence for such signals. The experiments at the Tevatron
have probed the mass range up to about 900 GeV [20–25] and the LHC experiments have set
sub-picobarn limits on the production cross section in the mass range of 1–3 TeV [26–31].

This paper presents a model-independent search for Z′ → tt → W+bW−b production, where
the leptonic and hadronic decay modes of the W bosons are considered. Unless otherwise
indicated, the symbol Z′ is used in the following to refer to the resonance decaying to tt, irre-
spective of the specific model. This results in final states with two, one, or zero leptons, which
are referred to as the dilepton, lepton+jets, and all-hadronic channels, respectively. The search
is based on pp collision data collected by the CMS experiment at the LHC at a center-of-mass
energy

√
s = 8 TeV, and corresponding to an integrated luminosity of 19.7 fb−1.

The final state of the dilepton channel consists of two leptons of opposite charge (ee, eµ, or µµ)
with high transverse momentum (pT), at least two jets from the fragmentation of b quarks, and
missing transverse momentum due to escaping neutrinos. The final-state objects arising from
decays of heavy tt resonances are collimated because of the large Lorentz boosts of the top-
quark decay products, and leptons from the W boson decay are reconstructed in the proximity
of jets from the fragmentation of b quarks. Special selection criteria are used to preserve high
lepton selection efficiency for non-isolated leptons at high resonance masses. The dominant
irreducible background is the tt continuum production. Other SM processes contributing to
the background are single top quarks, Z+jets, and diboson production.

The final state considered in the lepton+jets channel consists of one high-pT lepton (e or µ), at
least two jets, of which at least one jet is identified to arise from the fragmentation of a b quark,
and missing transverse momentum. As in the case of the dilepton analysis, special selection
criteria are used to identify non-isolated leptons at high resonance masses. A top-quark tagging
algorithm, referred to as a t tagging algorithm, is applied to identify fully hadronic decays of
the type t → Wb → qq′b merged into one single jet. The use of the t tagging algorithm
enhances the sensitivity of this channel at high resonance masses by about 30–40%, and leaves
tt continuum production as the dominant irreducible background. A bottom-quark tagging
algorithm is also used to create regions enhanced in signal for the analysis.

The all-hadronic channel considers events with a dijet topology, where both jets are consistent
with the decay of a top quark. Two separate regions are explored: a search region sensitive
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to Z′ masses MZ′ below 1 TeV, where Cambridge-Aachen (CA) jets [32, 33] with a distance
parameter of R = 1.5 are considered, and a search region for high resonance masses, using CA
jets with R = 0.8. Two distinct t tagging algorithms [34, 35] are used for these two regions. In
both regions the dominant background from non-top quark multijet production can be reduced
considerably by requiring one identified subjet in each of the two top quark candidates to
be consistent with the fragmentation of a b or c quark, leaving irreducible SM tt continuum
production as the dominant background.

Except for the non-top multijet backgrounds in the all-hadronic channels, the shapes of all SM
backgrounds are estimated from simulation. The total yield of the simulated samples is ob-
tained with a binned maximum likelihood fit to the reconstructed tt invariant mass (Mtt) distri-
butions. A limit on the production cross section of heavy resonances is extracted by performing
a template-based statistical evaluation of the Mtt distributions of all channels.

This paper is organized as follows: Section 2 gives a description of the CMS detector. The
reconstruction and identification of electrons, muons, and jets is described in Section 3. Sec-
tion 3 also gives an overview of the t tagging algorithms used. The data sets and simulated
Monte Carlo (MC) samples used in the analysis are given in Section 4. Section 5 describes the
event selection for the three different channels. Systematic uncertainties are discussed in Sec-
tion 6, while Section 7 describes the evaluation of the SM background processes. The statistical
analysis and the results are given in Section 8, and a summary is given in Section 9.

2 CMS detector
The central feature of the CMS detector is a superconducting solenoid of 6 m internal diameter,
providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron
calorimeter, each composed of a barrel and two endcap sections. In addition to the barrel and
endcap detectors, CMS has extensive forward calorimetry. Muons are detected by four layers
of gas-ionization detectors embedded in the steel flux-return yoke of the magnet. The inner
tracker measures charged particle trajectories within the pseudorapidity range |η| < 2.5, and
provides an impact parameter resolution of approximately 15 µm. A two-stage trigger system
selects pp collision events of interest for use in physics analyses. A more detailed description
of the CMS detector, together with a definition of the coordinate system used and the relevant
kinematic variables, can be found in Ref. [36].

3 Event reconstruction
The CMS experiment uses a particle-flow (PF) based event reconstruction [37, 38], which aggre-
gates input from all subdetectors. This information includes charged-particle tracks from the
tracking system and deposited energy from the electromagnetic and hadronic calorimeters, tak-
ing advantage of excellent granularity of the sub-systems. Particles are classified as electrons,
muons, photons, charged hadrons, and neutral hadrons. Primary vertices are reconstructed
using a deterministic annealing filter algorithm [39]. The vertex with the largest squared-sum
of the associated track pT values is taken to be the primary event vertex.

Electrons are reconstructed in the pseudorapidity range |η| < 2.5, by combining tracking in-
formation with energy deposits in the electromagnetic calorimeter [40, 41]. Electron candidates
are required to originate from the primary event vertex. Electrons are identified using infor-
mation on the shower shape, the track quality, and the spatial match between the track and
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electromagnetic cluster, and the fraction of total cluster energy in the hadron calorimeter. Elec-
tron candidates that are consistent with originating from photon conversions in the detector
material are rejected.

Muons are detected and measured in the pseudorapidity range |η| < 2.4 using the informa-
tion collected in the muon and tracker detectors [42]. Tracks from muon candidates must be
consistent with a muon originating from the primary event vertex and satisfy track fit quality
requirements.

Since the top-quark decay products can be collimated at high values of MZ′ , no isolation re-
quirements on the leptons are imposed in either the trigger or offline selections.

The missing transverse momentum vector ~pmiss
T is defined as the projection on the plane per-

pendicular to the beams of the negative vector sum of the momenta of all reconstructed parti-
cles in an event. Its magnitude is referred to as Emiss

T .

Particle-flow candidates are clustered into jets using the FASTJET 3.0 software package [43].
Charged hadrons associated with other event vertices than the primary event vertex are re-
moved prior to jet clustering. All jets are required to satisfy |η| < 2.4. The dilepton and lep-
ton+jets analyses use jets obtained by the anti-kT jet-clustering algorithm [44] with a distance
parameter of 0.5 (AK5 jets). If a lepton candidate (electron or muon) is found within ∆R < 0.5
of an AK5 jet, its four-momentum is subtracted from that of the jet. In this paper the unmod-
ified term ‘jet’ will refer to these AK5 jets. The all-hadronic analyses use the CA jet-clustering
algorithm [32, 33] with distance parameters of 0.8 (CA8 jets) and 1.5 (CA15 jets) for the analyses
at high and low values of the tt invariant mass, respectively. The CA8 jets are also employed
in the lepton+jets analysis to identify the hadronic decay of top quarks with high pT in the
hemisphere opposite to one defined by the momentum vector of the lepton. All jets contain
neutral particles from additional collisions in the beam crossing (pileup). The extra contribu-
tion is subtracted based on the average expectation of the pileup in the jet catchment area using
the techniques of Ref. [45]. Jets are identified as originating from the fragmentation of a b or
c quark by the combined secondary vertex algorithm (CSV). The loose and medium operat-
ing points are used, which were chosen to have a misidentification probability of 10% and 1%,
respectively, for light-parton jets to be tagged [46]. All jets are required to satisfy quality selec-
tions to remove calorimeter noise and other sources of fake jets [47]. Events are required to also
satisfy selection criteria to remove calorimeter noise from Emiss

T signals as described in Ref. [48].

The structure of CA jets is used to distinguish hadronically decaying top quarks merged into a
single jet from light quark or gluon jets. For CA8 jets the CMS t tagging algorithm is used [49,
50], which is based on an algorithm studied in Ref. [34]. Only jets with pT > 400 GeV are
considered, as at lower momenta the decay products of the hadronically decaying top quark
are rarely merged into a single jet. The algorithm attempts to split the merged jets into subjets.
In the process, soft and wide-angle particles relative to the parent in the clustering are ignored,
enhancing the separation into subjets. CA8 jets that pass the CMS t tagging algorithm (CA8
t-tagged jets) are required to have at least three subjets. The mass of the jet has to fulfill 140 <
Mjet < 250 GeV, the minimum pairwise mass of the three highest pT subjets Mmin is required to
be greater than 50 GeV, and the N-subjettiness [51, 52] ratio τ32 ≡ τ3/τ2 must be smaller than
0.7. The N-subjettiness observable τN , defined through the relation

τN =
1
d0

∑
i

pT,i min [∆R1,i, ∆R2,i, · · · , ∆RN,i] ,

is a measure of the consistency of a CA jet with N or fewer subjets, where i is a sum over all
jet constituents, and the ∆R terms represent distances between a given constituent i and one of
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the N candidate subjet axes. The quantity d0 is a normalization constant.

The HEPTopTagger [35] algorithm is applied to CA15 jets. The larger distance parameter allows
the identification of hadronic decays of top quarks with intermediate transverse momenta,
pT > 200 GeV. The CA15 jet is decomposed according to the last clustering step of the CA
algorithm. Subjets are identified by an iterative procedure: when undoing the last clustering of
the jet into two subjets, the mass of the heavier subjet is required to be between 30 GeV and 80%
of the mass of the original jet. The algorithm fails if fewer than three subjets are found. If three
or more subjets are reconstructed, jet constituents are reclustered using the CA algorithm with
filtering [53] until there are exactly three subjets. Additional criteria are applied to the invariant
mass calculated from the three subjets and the pairwise masses using combinations of the three
subjets to reject jets from light quarks or gluons [50]. Jets identified by the HEPTOPTAGGER

are referred to as CA15 t-tagged jets [54].

In the all-hadronic channel, additional discriminating power against background processes is
obtained from the application of the CSV algorithm to the subjets of the CA jets. A CA jet
is considered to be b-tagged if the subjet with the highest discriminator value satisfies the re-
quirement for the medium operating point. This has an efficiency of about 65% and a misiden-
tification probability of approximately 5%. In the following, this algorithm will be called subjet
b tagging. Its performance has been studied in data, and shows a gain in efficiency for boosted
topologies with respect to the standard b tagging algorithm [55]. The same study also com-
pared the b-quark efficiency in data and simulated events, and established that the measured
data-to-simulation scale factor for b-tagged subjets is the same as for unmerged b jets.

4 Trigger and data sets

5 Reconstruction of tt events
Dilepton events are collected with single-lepton triggers. Events for the ee channel are se-
lected using a single electron trigger with a pT threshold of 80 GeV and an efficiency of 90%.
In all cases, no isolation requirement is applied to the leptons. Similarly, eµ and µµ events are
recorded with a trigger requiring a single muon with pT > 40 GeV and |η| < 2.1. The efficiency
for this trigger is 95% for muons measured within |η| < 0.9; 85% if they are measured within
0.9 < |η| < 1.2 and 83% for 1.2 < |η| < 2.1.

The data used in the lepton+jets channel also rely on single lepton triggers. The trigger for
electron events requires one electron with pT > 35 GeV in conjunction with two jets that have
pT > 100 and 25 GeV, respectively. The trigger for muon events is the same one used in the
dilepton analysis. In both cases, no isolation requirement is applied to the leptons. A 10%
increase in the signal efficiency at MZ′ = 2 TeV is gained in the electron channel by including
events that are triggered by a single jet with pT > 320 GeV. The events recovered by the single-
jet trigger contain an electron merged in a jet, which can not be resolved at the trigger level. The
resulting trigger efficiency is 90% for events with a leading (highest pT) jet with pT < 400 GeV.
The trigger is fully efficient above this value.

The all-hadronic data sample is based on two different triggers. The first requires the scalar
sum of the pT of jets (HT) to be greater than 750 GeV, with an efficiency of 95% or higher after
the analysis selection. The second requires four jets with pT > 50 GeV at trigger level, used to
gain efficiency in the low mass regime with MZ′ < 1 TeV. The efficiency of this trigger is 50%
for events with the fourth leading jet having pT > 50 GeV, and increases to 100% for jets with
pT > 100 GeV.
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The total integrated luminosity associated with the datasets is 19.7 fb−1, except for the four-
jet data set, which corresponds to an integrated luminosity of 18.3 fb−1. The lower integrated
luminosity in the latter case is due to the unavailability of the four-jet trigger at the start of data
taking. The efficiencies for all triggers are well modeled by the simulation.

The Z′ → tt process is simulated using the MADGRAPH 4.4 [56] event generator, which pro-
duces a generic high-mass resonance with the same left- and right-handed couplings to fermions
as the SM Z boson. Higher-order parton radiations are calculated for up to three extra partons
at tree level. The simulation is performed for masses MZ′ of 0.75, 1, 1.25, 1.5, 2, and 3 TeV, and
for relative decay widths ΓZ′/MZ′ of 1% (narrow-width) and 10% (wide-width). Kaluza–Klein
gluon excitations are simulated using PYTHIA 8 [57]. The widths of the gKK signals are about
15–20% of the resonance mass. For visualization purposes, the signal samples are scaled to an
arbitrary cross section of 1 pb . This is about a factor of 30 larger than the cross section expected
from the narrow-width topcolor Z′ model.

Figure 1 shows the invariant mass of the tt quark system at the parton level for the Z′ and
gKK samples for two different invariant masses, 1.5 and 3 TeV. The samples at 1.5 TeV show a
peaked structure, characteristic of a narrow-width resonance. The samples at 3 TeV exhibit a
significant tail at low invariant mass values due to the interplay between the available partonic
center-of-mass energy and the width of the resonance; this is most pronounced for gKK because
of its very large width. Above 3 TeV, the resonant hypothesis for the signal samples is not valid
anymore, thus signals with masses above 3 TeV are not considered in this paper.
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Figure 1: The invariant mass distributions for different signal models, as described in the text,
for (left) 1.5 TeV and (right) 3 TeV masses. The narrow Z′ is shown with a solid line, the wide Z′

is shown with a dashed line, and the KK gluon is shown with a dotted line.

Top-quark events, produced via the strong and electroweak interactions, are simulated us-
ing the next-to-leading-order (NLO) generator POWHEG 1.0 [58–60]. The W(→ `ν)+jets and
Z/γ∗(→ ``)+jets processes are simulated using MADGRAPH 5.1 [61], and the diboson produc-
tion processes (WW, WZ, and ZZ) are simulated using PYTHIA 6.424 [62].

All of the samples produced with MADGRAPH are interfaced to PYTHIA for parton showering
and fragmentation. The MLM algorithm [63] is applied during the parton matching to avoid
double counting of partons. The MADGRAPH samples use the CTEQ6L [64] parton distribution
functions (PDF). For the POWHEG tt sample, the CT10 [65] PDF set is utilized, whereas the single
top quark processes are produced with the CTEQ6M PDF set. The most recent PYTHIA 6 Z2*
tune is derived from the Z1 tune [66], which uses the CTEQ5L parton distribution set, whereas
Z2* uses CTEQ6L [67].

The leading-order (LO) cross sections for the topcolor Z′ signal are taken from Ref. [10], whereas
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for gKK production, calculations from Ref. [18] are used. However, both cross sections are multi-
plied by a factor of 1.3 to approximate NLO effects [68]. The normalizations of the background
samples are taken from the NLO+next-to-next-to-leading logarithms (NNLL) calculation for
the single top quark production [69], the next-to-next-to-leading order (NNLO) calculations
for W(→ `ν)+jets and Z/γ∗(→ ``)+jets [70–72], and the NLO calculation for diboson produc-
tion [73]. The normalization for the continuum tt background uses NNLO calculations [74].
However, by comparing the number of simulated and data events in control regions, we deter-
mine additional cross section scale factors. This is discussed in Section 5.

A detailed simulation of particle propagation through the CMS apparatus and detector re-
sponse is performed with GEANT4 v9.2 [75]. For all simulated samples, the hard interaction
collision is overlaid with a number of simulated minimum bias collisions. The resulting events
are weighted to reproduce the pileup distribution measured in data. The same event recon-
struction software is used for data and simulated events. The resolutions and efficiencies for
reconstructed objects are corrected to match those measured in data [40, 42, 46, 48, 50].

5.1 Dilepton channel

In the dilepton channel, the selection is based on the assumption that both W bosons decay
leptonically. The selection requires two leptons and at least two jets. The lepton and the b
quark from the decay of a highly Lorentz-boosted top quark are usually not well separated,
resulting in a non-isolated lepton that partially or fully overlaps with the b-quark jet.

Offline, the following selection requirements are applied. In the ee channel, events are required
to have two electrons with pT > 85 GeV and pT > 20 GeV, each within |η| < 2.5. In the eµ
channel, there must be a muon with pT > 45 GeV with |η| < 2.1 and an electron with pT >
20 GeV with |η| < 2.5. Events in the µµ channel should contain two muons with pT > 45 GeV
and pT > 20 GeV with |η| < 2.1 and |η| < 2.4, respectively. In all three channels, the two lepton
candidates must have opposite charge. The invariant mass of the lepton candidates in the ee
and µµ channels must be M`` > 12 GeV and outside the mass window of 76 < M`` < 106 GeV.
These selections reduce the contribution from the production of low-mass resonances and from
on-shell Z boson production. Events are required to contain at least two jets with pT > 100 GeV
and pT > 50 GeV within |η| < 2.5.

Signal events are selected with a two-dimensional isolation variable that is efficient at high
top-quark boosts yet reduces multijet backgrounds. This two-dimensional isolation requires
∆R(`, jet) > 0.5 or pT,rel(`, jet) > 15 GeV, where ∆R(`, jet) is the distance in (η, φ) between
the lepton and the nearest jet, and pT,rel(`, jet) is the transverse momentum of the lepton with
respect to the axis of the closest jet. In calculating these quantities only jets with pT > 30 GeV
are considered. The relative efficiency of the selection requirement for the 1.5 TeV signal is ap-
proximately 70% independent of width. Its efficiency has been studied in data and simulation
in a Z/γ∗(→ ``)+jets sample. In this sample, one lepton, passing isolation criteria, is used as a
tag, and the other lepton is used as a probe to study the efficiency. The dilepton invariant mass
is used to determine the number of events passing and failing the two-dimensional isolation
criteria. Figure 2 shows the efficiency as function of ∆R(`, jet) for data and simulated events.
At small ∆R separation between the lepton and the closest jet, the efficiency for electrons is 5%,
increasing to 75% for larger ∆R(`, jet). The corresponding values are 10% to 90% for muons.
The efficiency is well described by the simulation and no correction is needed.

A requirement of Emiss
T > 30 GeV in the ee and µµ channels additionally reduces the contribu-

tion from multijet and Z/γ∗(→ ``)+jets production. Given the presence of two b quarks in the
events, a logical OR of two b tagging algorithms is used: at least one of the two leading jets is
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Figure 2: Efficiency of the two-dimensional isolation requirement for data and simulated events
for the electron (left) and muon (right) selection, as measured in a sample of Z/γ∗(→ ``)+jets.
The ratio of the efficiencies in data to simulation is shown at the bottom of each panel.

required to be tagged as a b-quark jet by the CSV algorithm at the medium working point or
both leading jets must be tagged using the loose working point of the CSV algorithm. After
these requirements, the sample contains about 90% tt background.

The boosted nature of the signal events provides an additional handle for further reduction
of the tt background: the separation in ∆R between each lepton and its nearest jet. Requiring
∆R(`1, jet) < 1.2 and ∆R(`2, jet) < 1.5, where `1 and `2 denote the leading and sub-leading
leptons, reduces the tt background contribution by more than a factor of 2, while the loss for
a Z′ signal with mass of 1.5 TeV is about 10%. Additionally, the region with ∆R(`2, jet) > 1.5
is dominated by events from continuum tt production and provides an independent sample
to check the tt background normalization. The contamination from resonant tt production is
expected to be less than 0.2% in this sample. The normalization of the tt background is found
to be compatible with the SM expectation using the NNLO cross section calculations, and good
agreement between the ee, eµ, and µµ channels is observed.

The resonant nature of the signal is exploited by constructing a mass variable from the four-
momenta of the two leading leptons, the two leading jets, and the neutrinos, which approxi-
mates the invariant mass of the tt system. For the momentum components px and py of the pair
of neutrinos, the x- and y-components of ~pmiss

T are used, and the pz component of each neutrino
is set to zero.

Figure 3 shows the Mtt distributions for the dilepton channel. The expected distribution from
a Z′ signal with MZ′ = 2 TeV is also shown. Good agreement between the data and the SM
background expectation is found.

5.2 Lepton+jets channel

The selection in the lepton+jets channel is based on events with one W boson decaying lep-
tonically, W → `ν, and the other one decaying hadronically, W → qq′. It requires one lepton
(electron or muon) and at least two jets with high pT, including events with non-isolated lep-
tons and merged jets arising from decays of two high-pT top quarks.

Events are required to have exactly one electron with pT > 35 GeV and |η| < 2.5, or one muon
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Figure 3: Reconstructed invariant mass of the tt pair in the ee (upper left), eµ (upper right), and
µµ (bottom) channels for data and simulated events. Each background process is scaled by a
factor derived from the maximum likelihood fit to data as explained in Section 7. The expected
distribution from a Z′ signal with MZ′ = 2 TeV and ΓZ′/MZ′ = 0.01, normalized to a cross
section of 1 pb , is also shown. The uncertainty associated with the background expectation
includes all the statistical and systematic uncertainties. The data-to-background ratio is shown
in the bottom panel of each figure. For the ratio plot, the statistical uncertainty is shown in light
gray, while the total uncertainty, which is the quadratic sum of the statistical and systematic
uncertainties, is shown in dark gray. There is a systematic disagreement observed in the high-
mass region that is accommodated by the renormalization and factorization scale uncertainty.
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with pT > 45 GeV and |η| < 2.1. The reconstructed lepton has to be consistent with originating
from the primary event vertex. In order to avoid overlap with the dilepton sample, events
with a second reconstructed lepton are removed. All events must have at least two jets with
pT > 150 GeV and pT > 50 GeV, both with |η| < 2.4. In order to ensure that there is no overlap
with the all-hadronic channel, events with two or more CA8 t-tagged jets are rejected. To reduce
the background from multijet production, events are required to have Emiss

T > 50 GeV and the
scalar sum of the lepton pT and Emiss

T has to be larger than 150 GeV.

A further reduction of the multijet background contribution is achieved by applying a similar
two-dimensional isolation criterion as described for the dilepton channel. It is applied for both
the electron and muon channels, requiring ∆R(`, jet) > 0.5 or pT,rel(`, jet) > 25 GeV, where
only jets with pT > 25 GeV are considered when calculating these quantities.

In addition, in the electron channel topological requirements are imposed that ensure that ~pmiss
T

does not point along the transverse direction of the electron or the leading jet [29],

|∆φ({e or jet}, ~pmiss
T )− 1.5| < Emiss

T /50 GeV

with Emiss
T measured in GeV. The efficiency of this requirement is above 95% for all signal

samples, while the background from multijet production is reduced significantly.

The tt system is reconstructed by assigning the four-vectors of the reconstructed final-state
objects to either the leptonic or hadronic leg of the tt decay. This is done by constructing a
two-term χ2 function, based on the masses of the reconstructed tt candidates [29, 31]. For each
event, the hypothesis with the smallest χ2 value is chosen. In case a CA8 t-tagged jet is found
in the event, this jet is used for the hadronic leg of the tt decay and all jets with ∆R < 1.3
from the t-tagged jet are removed from the list of possible hypotheses. Events are required to
have a minimum value of χ2 smaller than 50, which reduces the contribution from background
processes and enhances the sensitivity of the search. In the electron channel, the transverse
momentum of the reconstructed leptonic leg of the top-quark decay is required to be larger
than 140 GeV, to suppress the background from multijet production to a negligible level.

Events are categorized based on the lepton flavor and on the number of CA8 t-tagged jets. In
case no CA8 t-tagged jet is found, the events are further split into two categories, depending
if any jets are identified as originating from the fragmentation of a b quark using the medium
working point of the CSV algorithm. This has a tagging efficiency of 65% per jet [46].

An independent control sample is used to validate the mistag rate of CA8 t-tagged jets in the
W+jets sample. This sample is obtained by inverting the χ2 criterion, using the leptonic leg of
the tt decay hypothesis only, and requiring that no jet has been tagged as a b-quark jet by the
loose operating point of the CSV algorithm [46]. This removes most of the tt contamination
while retaining events from W+jets production. Figure 4 shows the pT and mass of the leading
CA8 jet in this sample. These jets are used to determine the mistag rate of the CA8 t-tagged jets
in data and simulated events that also contain a lepton (such events have a higher fraction of
jets from quark fragmentation than the non-top-quark multijet background for the all-hadronic
channel, which has a higher fraction of jets from gluon fragmentation). Good agreement is
observed, with a mistag rate of 1.2% in data, and a data-to-simulation ratio of 0.83± 0.21. This
factor is used to scale simulated events containing a misidentified top-quark jet.

The CA8 t tagging efficiency is extracted by a combined maximum likelihood fit by comparing
the yields in categories of events which pass and fail the CA8 t tagging selection criteria, as
explained in Section 7. To validate this procedure, distributions of the jet mass, minimum
pairwise mass, and the ratio τ32 for CA8 t-tagged jets are shown in the lepton+jets channel for
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Figure 4: Distribution of pT (left) and the jet mass (right) of the leading CA8 jet in a W+jets
control region, used to obtain the mistag rate of CA8 t-tagged jets. The horizontal error bars in-
dicate the bin width. The data-to-background ratio is shown in the bottom panel of each figure.
For the ratio plot, the statistical uncertainty is shown in light gray, while the total uncertainty,
which is the quadratic sum of the statistical and systematic uncertainties, is shown in dark gray.

data and simulated events in Fig. 5, where all SM components are normalized to the output of
the maximum likelihood fit as explained in Section 7.

The reconstructed top-quark candidates are used to calculate the tt invariant mass. The events
are divided into six categories, three for each lepton+jets channel, so in total six Mtt distribu-
tions are obtained. All six distributions are shown in Fig. 6.

5.3 All-hadronic channel

When the top quark has large pT and decays hadronically, all decay products frequently merge
into a single jet. Events with high tt invariant mass, where both quarks decay hadronically, thus
effectively result in a dijet topology. This forms the basis of the selection in the all-hadronic
channel. Two exclusive selections are made, one optimized for higher resonance masses, and
one optimized for lower resonance masses where the decay products are still somewhat colli-
mated.

To satisfy the high-mass selection, events are required to have two CA8 t-tagged jets with pT >
400 GeV and rapidity |y| < 2.4. The two jets have to be separated in azimuthal angle by |∆φ| >
2.1 radians. The rapidity difference between the two leading jets is also used to divide the
events into two categories (|∆y| < 1.0 and |∆y| > 1.0), since the QCD multijet background
with light-quark and gluon final states dominantly populates the |∆y| > 1.0 category, whereas
the Z′ signal with a mass of 2 TeV is equally split between the two. The two categories are
further subdivided depending on the number of CA8 jets containing a b-tagged subjet: zero,
one, or two. This results in six exclusive search regions, with the highest sensitivity in the
categories with two b-tagged CA8 jets.

The low-mass selection is applied to events failing the high-mass selection and is designed to
gain sensitivity in regions where the decay products are less collimated. Events are selected if
two CA15 t-tagged jets with pT > 200 GeV and |y| < 2.4 are found. The sample is split into
events with HT < 800 GeV and HT > 800 GeV, where HT is defined as the scalar sum of jet pT,
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Figure 5: Distributions of the jet mass (upper left), minimum pairwise mass Mmin (upper right),
and the ratio τ32 (bottom) for CA8 t-tagged jets in the lepton+jets channel. The SM backgrounds
are scaled by a factor derived from the maximum likelihood fit to data as explained in Sec-
tion 7. The uncertainty associated with the background expectation includes all the statistical
and systematic uncertainties. The data-to-background ratio is shown in the bottom panel of
each figure. For the ratio plot, the statistical uncertainty is shown in light gray, while the total
uncertainty, which is the quadratic sum of the statistical and systematic uncertainties, is shown
in dark gray.
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Figure 6: Invariant mass of the reconstructed tt pair in data and simulation in the electron+jets
(left column) and muon+jets (right column) channels. Events are separated into three cate-
gories: one CA8 t-tagged jet (top row), no CA8 t-tagged jet and at least one b tag (middle row),
and no CA8 t-tagged jet and no b tag (bottom row). Each background process is scaled by a
factor derived from the maximum likelihood fit to data as explained in Section 7. The expected
distribution from a Z′ signal with MZ′ = 2 TeV and ΓZ′/MZ′ = 0.01, normalized to a cross
section of 1 pb , is also shown. The uncertainty associated with the background expectation
includes all statistical and systematic uncertainties. The data-to-background ratio is shown in
the bottom panel of each figure. For the ratio plot, the statistical uncertainty is shown in light
gray, while the total uncertainty, which is the quadratic sum of the statistical and systematic
uncertainties, is shown in dark gray.
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including all jets with pT > 50 GeV. The sample is further categorized according to the number
of b-tagged CA15 jets.

In order to estimate the background for the all-hadronic analysis, an approach based on control
samples in data is applied. A sideband is selected by inverting the CA8 t tagging minimum
mass requirement on one of the jets in the dijet sample. For the low-mass analysis, the CA15
t tagging selection criteria based on the subjet invariant mass and pairwise masses are inverted.
The other jet provides a kinematically-unbiased ensemble of non-top-quark jets to measure the
mistag rate. This mistag rate is then applied to the events where exactly one jet passes the
t tagging selection. These events have a higher gluon fraction than the events used to derive
the mistag rate for the lepton+jets analysis, as mentioned above.

The misidentification probability, r, for a non-t-quark CA jet to be identified as a t-tagged CA
jet, is parameterized by three variables, the jet pT, the N-subjettiness ratio τ32, and the jet b
tagging discriminant β (the output of the CSV algorithm described above), r = r(pT, τ32, β).
The variable τ32 is not used for the low-mass analysis because it does not enhance the sensitivity
of the search. In this case, the mistag rate is parameterized as a function of two variables only,
using the same procedure. The mistag rate is binned, defined as ri,j,k. To estimate the non-
top-quark multijet background arising from mistagging light jets, a four-dimensional array of
counts Nα,i,j,k is measured in the single t-tagged data sample, where α is the bin of the variable

of interest (in this case, Mtt), given by Nα = ∑
Njets
a=1 Nα,i,j,k ri,j,k, where the indices i, j, k are the

bins in pT, τ32, and β in which jet “a” lies. The four-dimensional parameterization properly
accounts for correlated and uncorrelated statistical uncertainties. The uncertainty in each bin
of the predicted mistagged distribution has two parts: one arises from the misidentification
probability, and the other from the number of jets in the ensemble; they are uncorrelated and
are added in quadrature. The details of this procedure are given in Appendix A.

Figure 7 shows the CA8 t tagging misidentification probability as a function of the CA8 jet pT
for different bins of τ32 and β. Figure 8 shows the CA15 t tagging misidentification probability
as a function of the CA15 jet pT for different values of β for the low-mass analysis. Figures 9
and 10 show validation of this procedure on QCD simulation in the various tagging categories
for the high- and low-mass analysis, respectively. Good agreement between the predicted and
selected contribution from QCD multijet production is observed in both analyses.

The results of the high-mass selection in the all-hadronic channel are shown in Fig. 11 for events
with |∆y| < 1.0 in the three b-tag categories. The distributions of Mtt obtained with the low-
mass selection are shown in Fig. 12 for events with two subjet b tags, for HT > 800 GeV and
HT < 800 GeV. The tt background process is scaled by a factor derived from the maximum
likelihood fit to data as explained in Section 7, and the non-top-quark multijet background is
obtained from data in a sideband region.

6 Systematic uncertainties
The sources of systematic uncertainties considered in these analyses are summarized in Table 1.
Uncertainties originating from the same source are assumed to be 100% correlated between all
channels. The uncertainties can affect the normalization, the shape, or both normalization and
shape of the Mtt distribution.
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Figure 7: Misidentification probability for CA8 jets to be tagged as top-quark jets for different β
ranges and for different τ32 values in the high-mass all-hadronic analysis. The horizontal error
bars indicate the bin width.

6.1 Uncertainties affecting the normalization

The following systematic uncertainties in the normalization of the background processes are
considered. The uncertainty in the cross section for SM tt production is 15% [76]. Uncertainties
in the production cross sections of W+jets are 9% for light-flavor jets [77], and 23% for heavy-
flavor jets [78]. An uncertainty of 50% is assigned to the cross section of Z+jets production,
obtained by varying the renormalization and factorization scales simultaneously by factors of
0.5 and 2. The largest background contribution from single top quark production originates
from the tW channel, which has been measured with an accuracy of 23% [79]; this uncertainty
is used for all electroweak single top production processes. The uncertainty in diboson produc-
tion is 20% [80, 81].

In addition, the following systematic uncertainties affect the normalization of all simulated
processes, including signal processes. The uncertainty in the measurement of the integrated
luminosity is 2.6% [82]. The combined trigger used in the electron category in the lepton+jets
channel has an efficiency uncertainty of 1%. The uncertainty due to the single-muon trigger
efficiency is 1%, which affects the muon category in the lepton+jets channel and the eµ and µµ
categories in the dilepton channel.

6.2 Uncertainties affecting the shape

Systematic uncertainties due to the electron identification are applied as a function of electron
pT and η to events with an identified electron in the dilepton and lepton+jets channels. The
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Figure 8: Misidentification probability for CA15 jets to be tagged as top-quark jets for differ-
ent β values for HT > 800 GeV (left) and HT < 800 GeV (right) in the low-mass all-hadronic
analysis. The horizontal error bars indicate the bin width.

uncertainty in the efficiency of the single electron trigger is applied as a function of electron pT
and η and affects the ee dilepton channel. Systematic uncertainties due to the muon identifica-
tion and trigger efficiencies are applied as a function of muon pT and η and affect events with
a muon in the dilepton and lepton+jets channels.

The efficiencies of the HT and four-jet triggers are measured as a function of HT and the pT of
the fourth jet in the event, respectively. A correction is applied for the different behavior be-
tween data and simulation in the region where the triggers are not fully efficient. A systematic
uncertainty of half the size of this correction is assigned, with a minimum of 2% in regions
where the triggers are fully efficient as determined from MC studies of the efficiency. These
uncertainties affect the all-hadronic analyses. Uncertainties in the jet energy scale and resolu-
tion are of the order of a few percent, and are functions of jet pT and η. These are taken into
account in all channels. These uncertainties are also propagated to the estimation of ~pmiss

T . The
systematic uncertainty associated with the pileup reweighting procedure is assumed to be fully
correlated among all channels and is evaluated by varying the minimum bias cross section.

Efficiencies and mistag rates of the b tagging algorithm have been measured in data and simu-
lated events for jets [46] and subjets with a spatial separation between them of ∆R > 0.3 [55].
The corresponding uncertainty is correlated between the dilepton, lepton+jets, and the low-
mass category of the all-hadronic channel. The high-mass selection in the all-hadronic channel
uses subjet b tagging in a collimated region, where the subjets are separated by ∆R < 0.3. The
applicability of the standard b tagging correction factors and uncertainties is not guaranteed
in this kinematic regime, because of double-counting of tracks from subjets, which are used in
the b tagging algorithm. To account for this, the corresponding efficiency is measured simul-
taneously with the derivation of the cross section limits as described in Section 7, where the
efficiency is left unconstrained in the maximum likelihood fit when deriving upper limits. This
approach allows for a consistent extraction directly from the signal regions. The same proce-
dure is used for the efficiency of the CA8 t tagging algorithm, combined with the requirement
on τ32.

The mistag rate of the CA8 t tagging algorithm has been studied for data and simulated events
in a sideband region of the lepton+jets channel, dominated by W+jets events (as described
in Section 5). An uncertainty of 25% is used for simulated events, which mostly affects the
contribution of events from W+jets processes in events with one misidentified top-quark jet
in the lepton+jets channel. Misidentified CA8 and CA15 t-tagged jets are the source of the
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Figure 9: Results of the validation test for the high-mass all-hadronic analysis, using simulated
QCD multijet events, to validate the data-driven background method used to estimate the QCD
multijet contribution. Events are shown without any selection or division applied based on the
number of identified b-tagged jets for |∆y| < 1.0 (left) and |∆y| > 1.0 (right). The points show
the selected QCD multijet events in the signal region, with the horizontal error bars indicating
the bin width. The solid histogram shows the predicted number of QCD multijet events using
the misidentification probability for CA8 t-tagged jets measured in a statistically independent
sideband region. The statistical uncertainty is shown as a shaded region. The ratio of selected
to predicted events is shown in the bottom panel of each figure.
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Figure 10: Results of the validation test for the low-mass all-hadronic analysis, using simu-
lated QCD multijet events, to validate the data-driven background method used to estimate the
QCD multijet contribution for events with HT > 800 GeV (left), and events with HT < 800 GeV
(right). The points show the selected QCD multijet events in the signal region, with the hori-
zontal error bars indicating the bin width. The solid histogram shows the predicted number of
QCD multijet events using the misidentification probability for CA15 t-tagged jets measured
in a statistically independent sideband region. The statistical uncertainty is shown as a shaded
region. The ratio of selected to predicted events is shown in the bottom panel of each figure.
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Figure 11: Reconstructed invariant mass of the tt pair in the all-hadronic channel for data and
simulated events passing the high-mass selection. Events are divided into six categories: events
with two subjet b-tags and |∆y| < 1.0 (upper left), one subjet btag and |∆y| < 1.0 (middle left),
no subjet btag and |∆y| < 1.0 (lower left), two subjet btags and |∆y| > 1.0 (upper right), one
subjet btag and |∆y| > 1.0 (middle right), no subjet btag and |∆y| > 1.0 (lower right). The
uncertainty associated with the background expectation includes all the statistical and system-
atic uncertainties. The data-to-background ratio is shown in the bottom panel of each figure.
For the ratio plot, the statistical uncertainty is shown in light gray, while the total uncertainty,
which is the quadratic sum of the statistical and systematic uncertainties, is shown in dark gray.
The expected distribution from a Z′ signal with MZ′ = 2 TeV and ΓZ′/MZ′ = 0.01 is also shown,
normalized to a cross section of 1 pb .
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Figure 12: Reconstructed invariant mass of the tt pair in the all-hadronic channel for data and
simulated events passing the low-mass selection. Events with two subjet b tags are shown, for
HT < 800 GeV (left) and HT > 800 GeV (right). The signal is normalized to a cross section of
1 pb. The uncertainty associated with the background expectation includes all the statistical
and systematic uncertainties. The data-to-background ratio is shown in the bottom panel of
each figure. For the ratio plot, the statistical uncertainty is shown in light gray, while the total
uncertainty, which is the quadratic sum of the statistical and systematic uncertainties, is shown
in dark gray. The expected distribution from a Z′ signal with MZ′ = 1 TeV and ΓZ′/MZ′ = 0.01
is also shown, normalized to a cross section of 1 pb .

QCD multijet background in the all-hadronic channel. The background estimation is obtained
from data in sideband regions and the corresponding uncertainties are assumed to be fully
uncorrelated between individual bins of the Mtt distribution. The efficiency of CA15 t-tagged
jets has been studied in data and simulated events [50]. The associated uncertainty affects only
the low-mass selection of the all-hadronic channel.

In addition to the experimental uncertainties, the following uncertainties affecting the predic-
tions of the SM background processes are considered. The effect due to missing higher-orders
in the simulation of SM processes is estimated by variations of the renormalization and factor-
ization scales. For the W+jets and tt simulated samples, the renormalization and factorization
scales are varied simultaneously by factors of 0.5 or 2. The resulting uncertainty in continuum
SM tt production affects all channels, while the uncertainty in W+jets production affects only
the lepton+jets channel. The effect due to the uncertainty in extra hard-parton radiation is stud-
ied by varying the jet matching threshold for simulated W+jets processes by factors of 0.5 and 2.
This uncertainty applies only to the lepton+jets channel. All simulated signal and background
events are reweighted according to the uncertainties parameterized by the eigenvectors of the
CTEQ6L and CT10 PDF sets. The shifts produced by the individual eigenvectors are added in
quadrature in each bin of the Mtt distribution. The resulting uncertainty is taken to be fully
correlated among all channels.

The impact of the systematic uncertainties on the normalization of the total background de-
pends strongly on the channel considered. The following uncertainties are the dominant ones
in the two channels with the highest sensitivity, the category with one CA8 t-tagged jet in the
lepton+jets analysis and the category with two b-tagged jets in the high-mass all-hadronic anal-
ysis. The dominant uncertainty comes from missing higher orders in the simulation of the tt
background and is on average 17%. The uncertainty due to the uncertainties in the PDFs is
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Table 1: Sources of systematic uncertainties and the channels they affect. The CA8 subjet b tag-
ging uncertainty includes the uncertainties in both the efficiency and mistag rate. Uncorrelated
uncertainties that apply to a given channel are marked by �. Uncertainties correlated between
channels are marked by ⊕.

Source of uncertainty
Prior

2` `+jets
Had. channel Had. channel

uncertainty high-mass low-mass

Integrated luminosity 2.6% ⊕ ⊕ ⊕ ⊕
tt cross section 15% ⊕ ⊕ ⊕ ⊕
Single top quark cross section 23% ⊕ ⊕
Diboson cross section 20% ⊕ ⊕
Z+jets cross section 50% ⊕ ⊕
W+jets (light flavor) cross section 9% �
W+jets (heavy flavor) cross section 23% �
Electron+jet trigger 1% �
HT trigger 2% ⊕ ⊕
Four-jet trigger ±1σ(pT) �
Single-electron trigger ±1σ(pT, η) �
Single-muon trigger and id ±1σ(pT, η) ⊕ ⊕
Electron ID ±1σ(pT, η) ⊕ ⊕
Jet energy scale ±1σ(pT, η) ⊕ ⊕ ⊕ ⊕
Jet energy resolution ±1σ(η) ⊕ ⊕ ⊕ ⊕
Pileup uncertainty ±1σ ⊕ ⊕ ⊕ ⊕
b tagging efficiency(†) ±1σ(pT, η) ⊕ ⊕ ⊕
b tagging mistag rate (†) ±1σ(pT, η) ⊕ ⊕ ⊕
CA8 subjet b tagging unconstrained �
CA8 t tagged jet efficiency unconstrained ⊕ ⊕
CA8 t-tagged jet mistag ±25% �
CA15 t-tagged jet efficiency ±1σ(pT, η) �
QCD multijet background sideband � �
PDF uncertainty ±1σ ⊕ ⊕ ⊕ ⊕
tt ren. and fact. scales 4Q2 and 0.25Q2 ⊕ ⊕ ⊕ ⊕
W+jets ren. and fact. scales 4Q2 and 0.25Q2 �
W+jets matching scale µ 2µ and 0.5µ �
MC statistical uncertainty � � � �

(†) AK5 and CA15 subjets

15%, which is the same size as the uncertainty in the total tt cross section in the phase space
considered. The size of other experimental uncertainties, like the CA8 t tagging efficiency, the
subjet b tagging efficiency, and uncertainties due to the jet energy scale and resolution, vary
between 4–12%.

7 Background evaluation
The main source of irreducible background in all channels arises from SM tt production. In
the lepton+jets channels, W+jets production contributes to events without a CA8 t-tagged jet.
Single top quark, Z+jets, and diboson production constitute small backgrounds overall, and
contribute to the dilepton and lepton+jets channels. In the following, these processes are com-
bined into a single “others” category.

Except for the non-top-quark multijet backgrounds in the all-hadronic channels, the shapes of
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Table 2: Parameters for the background normalization of the given processes, the scale factor
for CA8 t-tagged jets and the subjet b tagging scale factor. The value of each parameter is
obtained from a maximum likelihood fit. Also shown are the prior assumptions on the rate
uncertainties and the posterior uncertainties obtained by the fit. In case of the subjet b tagging
scale factor, the best fit value and the posterior uncertainty are given in units of the standard b
tagging scale factor and uncertainty.

Process
Best fit Prior Posterior
value uncertainty uncertainty

tt 0.99 15% 2.1%

W+jets (light flavor) 0.99 9% 5.0%

W+jets (c flavor) 1.06 23% 21%

W+jets (b flavor) 0.95 23% 18%

Single top quark 0.83 23% 22%

Z+jets 1.72 50% 36%

Diboson 1.02 20% 19%

CA8 t-tagged jets scale factor 0.94 unconstrained 3%

CA8 subjet b tagging scale factor 1.3 unconstrained 1.5

all SM backgrounds are estimated from simulation. The total yield of the simulated samples
is obtained with a maximum likelihood fit to the Mtt distributions. Since there is no control
sample of highly-boosted SM tt events that is disjoint from the signal regions of this analysis,
the maximum likelihood fit is used to extract the efficiency of the CA8 t tagging and subjet b
tagging algorithms simultaneously. This is accomplished by separating the sample into sub-
samples based on the tagging criteria, and allowing the fit to find the maximum likelihood.
Higher-order calculations, as listed in Section 4, are used as prior assumptions on the cross sec-
tions of each background process, with the uncertainties discussed in Section 6. No assumption
on the scale factor for the CA8 t-tagged jets is made and the corresponding nuisance param-
eter is left to float freely in the fit. The same is true for the subjet b tagging scale factor for
the high-mass selection in the all-hadronic channel. This procedure effectively constrains the
tagging efficiencies. No signal hypothesis is used in this procedure. Only the experimental
uncertainties (see Section 6) are included in the likelihood fit. Uncertainties due to scale and
matching systematics, as well as the uncertainties due to the PDF choice are not included. The
list of uncertainties considered is given in the upper part of Table 1.

The fit converges with no parameter outside of two standard deviations of the prior assump-
tion. A reduction of the uncertainty due to the tt normalization is obtained and a simultaneous
measurement of the CA8 t tagging and subjet b tagging efficiencies is performed. These results
do not change when including different signal hypotheses in the maximum likelihood fit.

The best fit values are used to scale the predictions for the various background processes. The
measured CA8 t tagging efficiency is used to scale simulated events containing one CA8 t-
tagged jet in the lepton+jets channel and all categories of the high-mass all-hadronic channels.
The nuisance parameter for the subjet b tagging scale factor is used to scale all simulated events
in the high-mass all-hadronic channels. The numerical values for the background normaliza-
tion, the CA8 t tagging scale factor, and the subjet b tagging scale factor are given in Table 2,
together with the prior and posterior uncertainties.
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Table 3: Signal efficiency and number of events in the ee, eµ, and µµ channels. The yield of
each MC background is obtained from NLO+NNLL calculations, multiplied by a scale factor
derived from the likelihood fit. The uncertainty given for each background process includes the
MC statistical uncertainty added in quadrature with all systematic uncertainties. The resonance
relative decay width ΓZ′/MZ′ is indicated by w.

ee channel eµ channel µµ channel

Efficiency

Z′ (M = 1 TeV, w = 1%) 0.22% 0.47% 0.28%
Z′ (M = 2 TeV, w = 1%) 0.34% 0.84% 0.55%
Z′ (M = 3 TeV, w = 1%) 0.25% 0.61% 0.54%
Z′ (M = 1 TeV, w = 10%) 0.18% 0.44% 0.28%
Z′ (M = 2 TeV, w = 10%) 0.31% 0.69% 0.49%
Z′ (M = 3 TeV, w = 10%) 0.27% 0.60% 0.37%
gKK (M = 1 TeV) 0.18% 0.41% 0.21%
gKK (M = 2 TeV) 0.25% 0.51% 0.35%
gKK (M = 3 TeV) 0.16% 0.42% 0.28%

Number of events

tt 834± 43 2955± 148 1696± 86
Single top quark 25± 7 67± 18 40± 11
Z+jets 39± 23 9± 8 158± 82
Diboson 1± 1 2± 1 3± 1
Total background 898± 67 3032± 167 1897± 170

Data 832 3006 1813

The number of expected and observed events after the maximum likelihood estimation is
shown in Tables 3–6 for all categories in the three channels.

8 Results
No significant excess of data over the expected SM background is observed. A Bayesian statisti-
cal method [83, 84] is used to derive 95% confidence level (CL) upper limits on the cross section
times branching fraction for Z′ → tt production. The limits are derived employing a template
based evaluation that uses the invariant mass distribution of the reconstructed tt pair. A likeli-
hood fit is used to compare the signal and SM background expectations. To build the likelihood
function, a Poisson probability is calculated in each bin of the mass distribution for each cat-
egory in each channel. The parameters representing the Poisson mean of the signal strength
and the background processes are determined in the fit. Pseudo-experiments are performed to
extract expected limits under a background-only hypothesis. The systematic uncertainties dis-
cussed in Section 6 are taken into account through nuisance parameters. These are randomly
varied within their ranges of validity using log normal distributions as the probability density
function. Correlations between the systematic uncertainties across all channels are taken into
account. The statistical uncertainties of simulated samples are treated as an additional Poisson
nuisance parameter in each bin of the mass distribution.
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Table 4: Signal efficiency and number of events in the e+jets and µ+jets channels. The yield of
each MC background is obtained from NLO+NNLL calculations, multiplied by a scale factor
derived from the likelihood fit. The uncertainty given for each background process includes the
MC statistical uncertainty added in quadrature with all systematic uncertainties. The resonance
relative decay width ΓZ′/MZ′ is indicated by w.

e+jets channel µ+jets channel
0-t, 0-b 0-t, 1-b 1-t 0-t, 0-b 0-t, 1-b 1-t

Efficiency

Z′ (M = 1 TeV, w = 1%) 0.5% 2.3% 0.5% 0.4% 2.2% 0.4%
Z′ (M = 2 TeV, w = 1%) 1.1% 2.5% 2.4% 1.1% 2.4% 2.3%
Z′ (M = 3 TeV, w = 1%) 1.5% 2.3% 1.8% 1.7% 2.3% 2.0%
Z′ (M = 1 TeV, w = 10%) 0.5% 2.1% 0.4% 0.4% 2.1% 0.4%
Z′ (M = 2 TeV, w = 10%) 0.9% 2.3% 1.9% 0.9% 2.2% 1.8%
Z′ (M = 3 TeV, w = 10%) 0.9% 2.1% 1.4% 1.0% 1.8% 1.4%
gKK (M = 1 TeV) 0.5% 1.8% 0.3% 0.4% 1.8% 0.3%
gKK (M = 2 TeV) 0.7% 1.9% 1.3% 0.7% 1.8% 1.2%
gKK (M = 3 TeV) 0.6% 1.5% 0.8% 0.6% 1.4% 0.9%

Number of events

tt 3127± 254 11345± 796 499± 47 3322± 255 11634± 749 491± 49
W+jets (light flavor) 4790± 955 222± 57 30± 9 4891± 875 207± 50 29± 8
W+jets (c flavor) 1128± 397 303± 110 8± 4 1186± 405 333± 117 11± 5
W+jets (b flavor) 111± 33 250± 76 3± 1 102± 29 243± 70 2± 1
Single top quark 244± 63 667± 169 8± 3 238± 61 702± 178 8± 3
Z+jets 485± 123 90± 23 3± 1 606± 153 110± 28 4± 1
Diboson 123± 25 29± 6 1± 1 134± 27 27± 6 1± 1
Total background 10007± 1422 12906± 1062 552± 53 10479± 1407 13256± 1049 545± 54

Data 10204 12157 465 10099 12510 493
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Table 5: Signal efficiency and number of events in the high-mass all-hadronic channel. The
yield of the tt background is obtained from NLO+NNLL calculations, multiplied by a scale fac-
tor derived from the likelihood fit. The multijet background is obtained from sideband regions
in data. The uncertainty given for each background process includes the statistical uncertainty
added in quadrature with all systematic uncertainties. The resonance relative decay width
ΓZ′/MZ′ is indicated by w.

|∆y| < 1.0 |∆y| > 1.0
0 b-tag 1 b-tag 2 b-tags 0 b-tag 1 b-tag 2 b-tags

Efficiency

Z′ (M = 1 TeV, w = 1%) 0.1% 0.3% 0.4% 0.0% 0.0% 0.0%
Z′ (M = 2 TeV, w = 1%) 0.8% 1.8% 1.1% 0.6% 1.7% 1.3%
Z′ (M = 3 TeV, w = 1%) 0.6% 1.0% 0.4% 0.8% 1.6% 0.9%
Z′ (M = 1 TeV, w = 10%) 0.1% 0.3% 0.4% 0.0% 0.0% 0.0%
Z′ (M = 2 TeV, w = 10%) 0.6% 1.6% 1.0% 0.3% 1.3% 0.9%
Z′ (M = 3 TeV, w = 10%) 0.4% 0.9% 0.5% 0.4% 0.9% 0.6%
gKK (M = 1 TeV) 0.1% 0.2% 0.2% 0.0% 0.0% 0.0%
gKK (M = 2 TeV) 0.3% 1.0% 0.8% 0.2% 0.7% 0.6%
gKK (M = 3 TeV) 0.2% 0.6% 0.4% 0.2% 0.5% 0.4%

Number of events

tt 59± 11 243± 30 262± 32 29± 5 112± 11 109± 12
QCD multijet 1984± 68 678± 31 68± 8 1465± 54 456± 24 41± 7
Total background 2043± 70 921± 46 330± 33 1493± 55 568± 28 150± 14

Data 1956 933 305 1523 604 143
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Table 6: Signal efficiency and number of events in the low-mass all-hadronic channel. The yield
of the tt background is obtained from NLO+NNLL calculations, multiplied by a scale factor
derived from the likelihood fit. The multijet background is obtained from sideband regions in
data. The uncertainty given for each background process includes the statistical uncertainty
added in quadrature with all systematic uncertainties. The resonance relative decay width
ΓZ′/MZ′ is indicated by w.

HT < 800 GeV HT > 800 GeV
0 b-tag 1 b-tag 2 b-tags 0 b-tag 1 b-tag 2 b-tags

Efficiency

Z′ (M = 0.75 TeV, w = 1%) 0.17% 0.64% 0.70% 0.01% 0.04% 0.03%
Z′ (M = 1 TeV, w = 1%) 0.13% 0.54% 0.56% 0.16% 0.61% 0.66%
Z′ (M = 2 TeV, w = 1%) 0.04% 0.09% 0.07% 0.08% 0.26% 0.18%
Z′ (M = 0.75 TeV, w = 10%) 0.15% 0.62% 0.64% 0.01% 0.06% 0.05%
Z′ (M = 1 TeV, w = 10%) 0.12% 0.54% 0.54% 0.13% 0.49% 0.50%
Z′ (M = 2 TeV, w = 10%) 0.04% 0.18% 0.15% 0.07% 0.27% 0.21%
gKK (M = 0.7 TeV) 0.11% 0.37% 0.42% 0.01% 0.04% 0.04%
gKK (M = 1 TeV) 0.11% 0.47% 0.49% 0.08% 0.40% 0.32%
gKK (M = 2 TeV) 0.06% 0.24% 0.19% 0.07% 0.23% 0.21%

Number of events

tt 851± 216 3238± 716 3009± 644 196± 65 698± 203 583± 165
QCD multijet 55932± 1598 18687± 613 1933± 92 8544± 331 3080± 168 311± 30
Total background 56781± 1633 21926± 984 4942± 655 8740± 341 3778± 268 894± 168

Data 57118 22485 5381 8920 3935 891
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The median of the distribution of the upper limits at 95% CL in the pseudo-experiments and the
central 68% (95%) interval define the expected upper limit and ±1σ (±2σ) bands, respectively.
Upper limits for three benchmark signal hypotheses are calculated: a topcolor Z′ boson [10]
with relative widths ΓZ′/MZ′ = 1.0% or ΓZ′/MZ′ = 10%, and a Randall–Sundrum KK gluon
with coupling as described in Ref. [18]. Resonance masses between 0.75 and 3 TeV are consid-
ered. Above mass values of 3 TeV, narrow-width signals would have cross sections below 1 fb
, placing them beyond the reach of Run 1 at the LHC, and signals with relative widths larger
than 10% would show no resonance structure at the collision energy of 8 TeV. All limits are
given at 95% CL.

A comparison of the expected limits obtained from the individual channels is shown in Fig. 13.
Also shown are the results from a search optimized for threshold production of the tt pair in
the lepton+jets channel [31]. This channel has the best sensitivity for resonance masses below
0.75 TeV. Above this value, the combination of the boosted analyses described in this paper
places better limits on the production cross section times branching fraction. The best overall
sensitivity is obtained in the lepton+jets channel. The high-mass selection of the all-hadronic
channel has comparable sensitivity in the mass region above 2 TeV.

Figure 14 shows the results for each of the three signal hypotheses. The cross section limits for
the narrow signal hypothesis are compared to the cross section for the production of a Z′ boson
with 1.2% width. This width is chosen for comparison with theoretical results and previous
measurements. Resonances with masses up to 2.4 TeV (2.4 TeV expected) for the narrow Z′

hypothesis are excluded. These cross section limits are model independent, meaning that they
are valid for any resonance decaying to tt, with a width well below the experimental resolution
of about 10%. Wide resonances with 10% width are excluded up to 2.9 TeV (2.8 TeV expected).
The better limits with respect to narrow resonances are due to the higher production cross
section of the wider Z′ resonance. Randall–Sundrum KK gluons decaying to tt are excluded
with masses below 2.8 TeV (2.7 TeV expected). This model exhibits the weakest upper limits on
the production cross section, because of the long tails towards low resonance masses present
in the predicted Mtt distribution. These tails are introduced by the interplay between the large
natural width of the KK gluons and the parton luminosity, causing masses that are far below the
resonance mass to have a larger probability than events near the resonance itself. The expected
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Figure 13: Expected 95% CL upper limits on the production cross section times branching frac-
tion for a Z′ boson decaying to tt with 1% width (left) and a KK gluon in the RS model (right).
The limits obtained from the individual channels are shown separately, together with the re-
sult from the combination. Also shown are results from a threshold analysis in the lepton+jets
channel [31], optimized for low mass values.
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Figure 14: Upper limits at 95% CL on the production cross section times branching fraction for
a Z′ boson decaying to tt with narrow width (upper left), with 10% width (upper right) and
a KK gluon in the Randall–Sundrum model decaying to tt (bottom). The vertical dashed line
indicates the transition from a threshold analysis [31] to the combination, in providing the best
expected limit. Below this dashed line, only the results of the low-mass analysis with resolved
jets are quoted; above this line, the results from the combination of the boosted channels are
given. The limits are shown as a function of the resonance mass and are compared to pre-
dictions for the cross section of a Z′ boson with relative width of 1.2% and 10% [10] and the
prediction for the production of a KK gluon [18]. The predictions are multiplied by a factor of
1.3 to account for higher-order corrections [68].
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Table 7: Expected and observed lower mass limits for the three benchmark models. Mass
limits are given for the dilepton analysis, the lepton+jets analysis, the combination of the two
all-hadronic analyses and the full combination of all four analyses. All limits are given at 95%
CL.

Mass limit [TeV]

Dilepton channel Lepton+jets channel All-hadronic channels Combined
Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs.

Z′, ΓZ′/MZ′ = 1.2% 1.4 1.5 2.2 2.3 2.1 2.1 2.4 2.4

Z′, ΓZ′/MZ′ = 10% 2.1 2.2 2.7 2.8 2.5 2.5 2.8 2.9

RS KK gluon 1.8 2.0 2.5 2.5 2.4 2.3 2.7 2.8

and observed exclusion limits for different resonance masses are given in Table 7.

The upper limits on the production cross section times branching fraction into tt are given
in Table 8, for different resonance masses. The upper limits on the cross sections show im-
provements of about 50% with respect to a previous combination of results from a search in
the lepton+jets and all-hadronic channels [31]. These improvements are mostly due to the use
of t tagging in the lepton+jets channel, and the application of b tagging on subjets in the all-
hadronic channel. The limits for MZ′ < 1 TeV are improved with the addition of the dilepton
channel and the low-mass selection in the all-hadronic channel.

9 Summary
A search has been performed for the production of heavy tt resonances in final states including
two, one, or no leptons. The analysis is based on a data sample corresponding to an integrated
luminosity of 19.7 fb−1 recorded in 2012 with the CMS detector in proton-proton collisions
at
√

s = 8 TeV at the LHC. No evidence is found for a resonant tt component beyond the
standard model tt continuum production. Model-independent cross section limits are set on
the production of such resonances that have widths well below the experimental resolution of
about 10%.

Cross sections times branching fractions above 11 fb are excluded at 95% confidence level (CL)
for the process pp→ Z′ → tt with a Z′ resonance [10] with mass of 2 TeV and width ΓZ′/MZ′ =
1%. The corresponding 95% CL expected cross section limit is 13 fb . The 95% CL observed
lower mass limit for a topcolor narrow Z′ resonance with ΓZ′/MZ′ = 1.2% corresponds to
2.4 TeV, which agrees with the expected limit.

Observed and expected 95% CL upper limits of 18 fb (23 fb ) are set for a Z′ boson [10] with a
mass of 2 TeV and width ΓZ′/MZ′ = 10%. The respective 95% CL observed and expected lower
mass limits are 2.9 and 2.8 TeV for a wide topcolor Z′ resonance.

For the production of Kaluza–Klein gluon excitations pp → gKK → tt predicted in Randall–
Sundrum models [18], an upper limit on the cross section of 38 fb is observed (50 fb expected)
at 95% CL for a mass of 2 TeV. The observed and expected lower mass limits are 2.8 and 2.7 TeV.

These mass limits represent significant improvements over previous ones set at
√

s = 7 TeV [26,
29, 30]. An improvement by about 50% on the 95% CL upper limits with respect to an earlier
search optimized for high masses at

√
s = 8 TeV [31] is achieved by the application of additional

jet substructure information and the addition of the dilepton channel. The results presented
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Table 8: Expected and observed limits for the production cross section times branching fraction
of a Z′ boson decaying to tt with a width of 1%, 10% and a KK gluon in the RS model. All limits
are given at 95% CL.

Z′, ΓZ′/MZ′ = 1%
MZ′ (TeV) Expected (pb) Expected range (±1σ) (pb) Expected range (±2σ) (pb) Observed (pb)

0.75 0.61 0.89 — 0.43 1.3 — 0.32 0.86
1.0 0.18 0.27 — 0.13 0.37 — 0.099 0.088
1.25 0.082 0.12 — 0.058 0.18 — 0.042 0.14
1.5 0.04 0.057 — 0.028 0.089 — 0.02 0.041
2.0 0.013 0.02 — 0.009 0.029 — 0.0067 0.011
3.0 0.0086 0.013 — 0.0059 0.021 — 0.0043 0.0059

Z′, ΓZ′/MZ′ = 10%
MZ′ (TeV) Expected (pb) Expected range (±1σ) (pb) Expected range (±2σ) (pb) Observed (pb)

0.75 0.83 1.2 — 0.57 1.8 — 0.42 0.89
1.0 0.26 0.37 — 0.18 0.53 — 0.14 0.13
1.25 0.13 0.19 — 0.09 0.26 — 0.067 0.22
1.5 0.063 0.089 — 0.044 0.13 — 0.03 0.064
2.0 0.023 0.034 — 0.016 0.055 — 0.011 0.018
3.0 0.023 0.036 — 0.016 0.055 — 0.011 0.017

RS KK gluon
MgKK (TeV) Expected (pb) Expected range (±1σ) (pb) Expected range (±2σ) (pb) Observed (pb)

0.7 1.7 2.5 — 1.2 3.8 — 0.84 3.5
1.0 0.42 0.6 — 0.28 0.84 — 0.21 0.24
1.4 0.16 0.23 — 0.11 0.32 — 0.078 0.25
1.5 0.12 0.17 — 0.083 0.24 — 0.059 0.15
1.8 0.064 0.098 — 0.045 0.15 — 0.032 0.056
2.0 0.05 0.074 — 0.034 0.12 — 0.024 0.038
2.5 0.045 0.068 — 0.03 0.11 — 0.021 0.034
3.0 0.059 0.088 — 0.039 0.15 — 0.028 0.041
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provide the most stringent constraints on resonant tt production to date.
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A Uncertainty on the background estimate in all-hadronic channel
As mentioned in Section 5, in the high-mass all-hadronic analysis, the mistag rate r is param-
eterized as a function of the jet pT, the N-subjettiness ratio τ32, and the b-tagging discriminant
β, of the jet “a”. In the low-mass analysis, the mistag rate is parameterized as a function of jet
pT and β only, but the procedure is otherwise identical.

Taking the high-mass analysis as an example, the non-top-quark multijet background arising
from events with mistagged light jets is estimated by dividing the data into bins along four
dimensions: jet pT, τ32, β, and the variable of interest α (in this case Mtt, although the procedure
is applicable to any other variable).

The expected background yield for this 4-dimensional bin is obtained by multiplying the events
in this bin before the application of t tagging, N(Mtt, pT, τ32, β) = Nα,i,j,k, by the mistag rate
r(pT, τ32, β) = ri,j,k. Summing all the predictions along indices i, j, and k then yields the total
prediction for the bin α:

Nα =
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∑
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where Njets is the number of jets in the event. The four-dimensional parameterization properly
accounts for correlated and uncorrelated statistical uncertainties. The uncertainty in each bin of
the predicted mistagged distribution σ(mα) has two parts: one arises from the misidentification
probability (σ(ri,j,k)), and the other from the number of jets in the ensemble (

√
Nα,i,j,k) :

σ(mα) =

√√√√Njets

∑
a=1

((
Nα,i,j,k σ(ri,j,k)

)2
+
(√

Nα,i,j,k ri,j,k

)2
)

,

The first term accounts for all uncertainties in the i, j, k-th bin of the mistag probability. The
second term accounts for statistical uncertainties in the jet ensemble. Both of these terms are
individually added linearly since they are fully correlated within each bin. The two pieces are
added in quadrature since they are fully uncorrelated.
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Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet9, G. Boudoul, E. Bouvier, S. Brochet, C.A. Carrillo Montoya,
J. Chasserat, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay,
S. Gascon, M. Gouzevitch, B. Ille, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot,
S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier,
S. Viret, H. Xiao

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi,
Georgia
Z. Tsamalaidze10

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, M. Edelhoff, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski,
A. Ostapchuk, M. Preuten, F. Raupach, J. Sammet, S. Schael, J.F. Schulte, T. Verlage, H. Weber,
B. Wittmer, V. Zhukov6

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg,
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Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi,
Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas,
A. Markou, A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Ioánnina, Ioánnina, Greece
I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos,
E. Paradas, J. Strologas

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, A. Hazi, P. Hidas, D. Horvath19, F. Sikler, V. Veszpremi, G. Vesztergombi20,
A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi21, J. Molnar, Z. Szillasi

University of Debrecen, Debrecen, Hungary
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INFN Sezione di Catania a, Università di Catania b, CSFNSM c, Catania, Italy
G. Cappelloa, M. Chiorbolia,b, S. Costaa,b, F. Giordanoa, R. Potenzaa,b, A. Tricomia,b, C. Tuvea ,b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
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